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tion will differ only slightly from the zero-order wave function, and the true
eigenvalue will differ only slightly from the zero-order eigenvalue.

Figure 7.3b shows the correct shape for the true eigenfunction. The shape
can be derived qualitatively by simple arguments. Near x = L/2, and without
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Fig. 7.3. A one-dimensional system containing a small,
central potential well.

the perturbing well, the curvature of i, (d%J/dx?) is nearly constant. When' the
new well is added, the curvature of i in the region B must be considerably
greater than it was before, and therefore greater than the curvature just outside
the well. This occurs since, in the region B, the difference between the potential
energy and the total energy is much greater. Inside the region B the true wave
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(¢o)2 2-2x10* / (b)

Fig. 7.4. A sample calculation using perturbation theory.

and the energy eigenvalues are,
W2 = n?n2h2[2mL>?
Let the mass = 9.11 x 10728 gm, L = 10~® cm. Since /4 = 1.054 X 10727
erg sec, we have '
$? =1/2 x 108 sin nrx/10-8 (cm)~—1/2
The lowest energy level is®
W =6-0x 10 erg, or 38 e.v.

5If h = 1.054 x 10~ joule sec, m =9.11 x 10-3 kg, and L = 10" m, then
W? =6.0 x 10718 joule (1 e.v. = 1.6 X 10~ joule).
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With the aid of Figure 7.4d, one can see at once that H,; = 0, and there-
fore a,=0.

As higher a,’s are calculated, one should use exact integration in the
calculation of the intensity of the odd-numbered components, because the eigen-
functions vary more rapidly inside the perturbing well, although by symmetery
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Fig. 7.5. The calculated corrections to the zero-order state
4 of the system of Figure 7-4.

all of the even-numbered components are always exactly zero. Because the
denominator W9 — W? appears in the calculation of a;, the magnitude of aj
becomes smaller with increasing W9§ — W09,

Continuing the calculation of the a,’s, we find the amplitude of the terms
up through n = 9. These are shown in Figure 7.5. The component wave
functions are drawn to scale, with the correct sign. At the bottom of Figure



STEADY-STATE PERTURBATION
THEORY. NONDEGENERATE
CASE

In Chapters 3 and 4 we found the eigenfunctions of certain simple, highly
symmetrical systems. These eigenfunctions correspond to standing-wave pat-
terns of matter waves which resonate within the bounding potential walls much
as sound waves resonate in a room with highly reflecting walls, or electro-
magnetic waves resonate in a conducting cavity. Indeed, the basic techniques of
Chapters 3 and 4 will locate the resonant frequencies of any bounded system
containing waves. Once the wave equation and the boundary conditions are
specified, a set of natural resonant frequencies, each with its characteristic
stationary wave pattern, is determined. For example, in a rectangular room
with highly reflecting walls, a resonance will occur whenever an integral number
of half wavelengths equals one of the sides of the rectangle. In Figure 7.1a,
. plane waves of sound, whose crests are A meters apart, are seen moving to the
right in a rectangular box. These waves will soon be reflected from the wall
on the right and then travel toward the left. If there is an integral number of
half wavelengths along the edge (5 half wavelengths are illustrated in the figure),
a standing-wave pattern will occur. A closed pipe containing sound waves
develops its characteristic frequencies in just this way.

Suppose now, as in Figure 7.1b, the symmetry is destroyed by covering
one corner with a small flat, reflecting surface. The plane waves of Figure
7.1a will now no longer be reflected cleanly from the right-hand wall. The
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simple standing-wave pattern that will occur in the upper diagram depends
upon the fact that the plane waves propagating to the right are superimposed
upon the reflected plane waves propagating to the left.

What will happen in Figure 7.1b? Clearly, the simple resonance due to
plane waves propagating to the right and to the left is upset, for even waves

reflected wave

— — > e
< ———— ———e
A s
—— >
o . — o~

(a) Symmetrical cavity
crest of reflected wave
which was initially plane

(b) Unsymmetrical cavity

. Fig. 7.1. Waves in cavities with reflecting walls.

that are initially plane will soon be going in many directions owing to the
reflections from the odd corner. Rather than solve the problem just posed for
sound waves, we will turn to a similar situation involving matter waves and see
what changes in the pattern of resonance occur when a small, not necessarily
symmetrical, change is made in what was originally a highly symmetrical
potential well.

In principle, we can set up, and solve, the exact Schrodinger wave equation
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including the new term or terms, guided only by the basic postulates. This
amounts, as we have seen, .to finding certain characteristic functions of space,
Pa(x, y, z) or Yu(r, 8, ¢), which together with the time factor, e=iW!/" satisfy
the requirements of all of the postulates. This process is not particularly simple,
even in highly symmetrical systems, and for systems that depart from perfect
rectangular or circular symmetry it becomes difficult or impossible. Mathe-
matically, this is often owing to the impossibility of separating the variables. In
any case, for only a handful of systems can the eigenfunctions be found in
mathematically closed form.! This makes the few sets of eigenfunctions that
are known—such as the hydrogen-like eigenfunctions—of great value. For
many systems the exact wave equation contains, in dominant form, the terms
that belong to the symmetrical, solvable system, plus some terms of relatively
small influence. The assumpton is then made that the exact eigenfunctions of
the true wave equation do not differ greatly from the known eigenfunctions of
the symmetrical, solvable system which is similar to the true system. The known
eigenfunctions are used as a starting point, and corrections are thenscalculated
by approximate methods. This technique is often surprisingly successful, even
when the corrections are quite large. The terms of relatively small influence in
the wave equation which cause it to differ from the equation of a symmetrical,
solvable system are called ‘“‘perturbation terms.”

Today, in the applications of quantum mechanics, practically all calcula-
tions being made are of the type described above—i.e., perturbation calculations.

In this chapter we shall be concerned with finding the eigenfunctions which
belong to systems that have a small, time-independent difference from known,
symmetrical systems. In Chapter 10, we will consider perturbations that are
not constant in time. .

Perturbation theory for the steady state, first applied by Schrodinger in
1926, is based on the reasonable assumption that a small change in the Hamil-
tonian operator will result in a correspondingly small change in the eigenfunc-
tions of the system. In terms of the acoustical model in Figure 7.1, if the de-
formation in the corner is very small, the enclosure will resonate at a/most the
same set of frequencies and have a/most the same standing-wave patterns as
when the deformation is entirely missing. As the deformation is made larger
and larger, however, the characteristic frequencies and the associated standing-
wave patterns will become more and more different from those of the perfectly
symmetrical box.

7.1. Perturbation theory, nondegenerate level

Let the exact Hamiltonian H be given by
H= H®+ \H’ [7~|

! There are a few other types of symmetry, such as cylindrical and ellipsoidal, which
permit separation of variables and exact solutions.
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where H° is the operator, derived for the unperturbed system with known
eigenfunctions 5 and eigenvalues WJ. That is,

HOYs = W, [7-2

The term H' is the perturbation term, derived by the usual operator-substitution
method of Postulate II. The factor A is a constant® whose value will be set
anywhere between 0 and 1. Its purpose is to control the size or magnitude of
the perturbation for a reason that will be apparent shortly. We can regard A
as a ““control knob” which varies the effect of the perturbation all the way from
0 up to its full value. We look then at any particular eigenvalue W, and at
any particular point in space, x;, y,, z;, where we observe the amplitude W
of the wave function. How will the eigenvalue, and the eigenfunction (at
X1, ¥1, Z;) change as the perturbation is increased from 0 to its full value?
We can only suppose that they will vary in some smooth manner from their
“starting points” W,, and 2 (x,, y,, z;). Whether ,, becomes larger or smaller
than i, as the magnitude of the perturbation increases depends upon the point
(x, y, z) in space where i, is being examined. ¥, may be unchanged at some
points, increase in some regions, and decrease in other regions. Thus, after the
perturbation is completely “‘turned on” (i.e., A = 1), we find that the new
eigenfunction ¢, will, in general, be everywhere different from 2. There is no
reason, furthermore, to expect W, or 4, (x, y, z) to deviate in an exactly linear
manner from their “starting points” W3 and % (x, y, z), so we must allow for
some curvature. In Figure 7.2, for each case, we approximate the true curve
with a linear term in A, with a coefficient W, or 4., (x,, ¥,, z,), plus a second-
degree term, in A%, which has different—and here, smaller—coefficients W’ and
¥"(x1, ¥y, z,). If the curvature is sharper, it may be necessary to synthesize
the true curve with terms dependent upon A3, A%, etc. We shall be concerned
here only with “first-order” approximations.. This means that we shall restrict
ourselves to perturbations in which, even when the perturbation is “on” at Sull
intensity (A == 1), the square-law terms are in all cases small compared to the
linear terms.

The use of A in this manner is really a mathematical artifice. It is possible
to identify, without its use, the different *“‘orders” of the approximation. How-
ever, if we regard A as a ““control knob” on the magnitude of the perturbation
H’, and if we use A and A? to identify the linear and “‘square-law” dependence
of the correction terms as in Figure 7.2, we will be able to simply and clearly
identify the “‘first-order” and the ‘‘second-order” corrections. Eventually we
will neglect all terms involving A2 (second-order terms), but first we must identify
them. Thus, during the subsequent calculations we shall retain A only long
enough to determine which part of the corrections to the W2s and the $9’s
are linear in A (first-order corrections), and then we will set A = 1—i.e., establish
the perturbation at its normal magnitude. For certain man-made perturbations,

? No relationship to wavelength 4,
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such as the application of electric or magnetic fields to an atom, one can actually
control the size of the perturbation. Perturbations inherent in the system
itself—such as the electron-electron interaction of the helium atom—cannot, of
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(This correction curve is for
one specific point, x),y;, and z,.
At other points in space y, may
deviate from y? by a different

amount and direction.)
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Fig. 7.2. The variation in an eigenvalue W, and an eigenfunction i,

(at a particular point in space) as a function of the magnitude of the per-
turbation (controlled by A).
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course, be controlled, and if the second-order (A?) terms happen to be large
when A = | (the only possible value of A, in reality), there is no alternative
but to continue the theory and the calculations to the higher orders. Here, we
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shall only consider the case where, even when A = 1, (i.e., the perturbation is
set at the actual magnitude required in the problem), the A2 terms in Figure 7.2
are of small magnitude compared to the A-dependent terms.

The way in which the “true” values of W, and #,(x,y,z,) vary as the
perturbation is “turned on” is not initially known. Thus, in Figure 7.2, the
“true’” curves are arbitrarily drawn. They illustrate that in principle the A and
the A? terms can have coefficients of different magnitude and sign. In fact, it is
in general true that at each point in space ¥.,(x, y, z) will have a different de-
pendence (in both magnitude and direction) upon the intensity of the perturba-
tion (the value of A). We expect, therefore, that a complete description of the
corrections.-to 9, (x, y, z) will be much more elaborate than the description of
the correction to W2,

We make the assumptions

Yo = Y5 + My 4 R, - [7-3°
W= Wa+ AW, + BW, + - [7-4°

where ¢, and W, are the eigenfunctions and eigenvalues, respectively, of the
true wave equation,

HY = — (Rfi)2/00) ¥ [7-5

which, since H is time independent, separates into two equations in the manner
described in Chapter 3. The amplitude equation is

Hy=w) [7-6

where, as far as the separation of [7-5) is concerned, W = any constant.

For certain discrete values of W, W, (yet to be found), the true wave
equation [/-6] has well-behaved solutions of integrable square, i, (yet to be
found), so that, of the infinity of ’s and W’s possible in [7-6], only those
which obey ’

Hl/’n = W'nl)l'n [7’_‘7

are possible eigenfunctions of real systems. Equation [7-7] is the true wave
equation for the system. We know that it must have eigenvalues and eigen-
functions, but there is one practical difficulty—the operator H has such a form
that we have no means of solving the problem exactly by standard analytical
mathematical methods. It usually happens that the spatial variables in [7-7]
cannot be separated, with the result that numerical methods, even with the
aid of a large automatic computer, are often not practical. We are forced,
therefore, to turn to some method of approximation. We do this, however,
' not because the postulates are deficient—{7-7] is the true wave equation and
it does have exact solutions corresponding precisely to the states of the system

? Note: Here the primes do nor mean differentiation. ¥’ (x, y, z) gives that part of the
correction to ¥y (x, y, z) at each point in space, which is linear in A.
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it represents—but only because, in this case, the mathematical tools are in-
adequate.

To find an approximate solution to [7/-7], therefore, we insert H in the
form given by [/-1]. For s, and W, we substitute the series given by [7-3]
and [7-4] respectively. After arranging the terms according to powers of A,
we have '

(HYS, — W) + MH,, + H'Y, — W — W)
b N(H + Hpry — WSy — Wihs — Wih)
=0 [7-8

This equation must be true for all values of A. Providing the series is properly
convergent, [/-8] can only be true when each of the coefficients of powers of
A vanish separately. The zero-order equation, obtained by setting the coefficient
of A% equal to O, is

H%p = Wl

which is merely the solvable equation [7-2]. The first-order equation is
HOr — W = (Wi — H') Y, [7-9

In this equation y,(x, y, z) and W,, are both unknown. W, is an unknown
constant and ¢,(x, y, z) is an unknown function.

We neglect the equation derived from setting the A2 coefficient equal to
zero, since we assume that, even when A = 1, the corrections to W2 and 9,
which are dependent upon A%, are small compared to those dependent upon A.

The equation obtained from [7-8] by setting the coefficient of A% equal to
zero is the second-order equation. It can be solved by basically the same method
shortly to be described for the first-order equation.

Before turning to the mathematical problem of calculating the first-order
corrections to the energy and to the wave function that are made necessary by
the introduction of a small perturbation, we shall first discuss a simple case
graphically, with the aid of Figure 7.3. (Problems 7.1 and 7.2 are concerned
with the mathematical analysis of a specific numerical example of a system
with the form of Figure 7.3.)

. In Figure 7.3a the unperturbed potential energy function forms a one-
dimensional box with infinite walls at x = 0 and at x = L. In between, the
potential energy is zero. The lowest eigenstate of the unperturbed system has
the normalized wave function ¢ = 4/2/L sin wx/L, as was found in Chapter 3,
and an energy W) = #2i22ml2. ‘

We now add a potential well, ¥ ergs in depth and B cm in width, centered
at x = L/2. Thus H' = — V, in the range x = (L/2) — B/2 to (L/2) -+ B/2,
and is zero elsewhere inside the box. If B, or V,, or both, are small enough, we
will expect that the true wave function, for the system including the perturba-
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tion will differ only slightly from the zero-order wave function, and the true
eigenvalue will differ only slightly from the zero-order eigenvalue.

Figure 7.3b shows the correct shape for the true eigenfunction. The shape
can be derived qualitatively by simple arguments. Near x = L/2, and without
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Fig. 7.3. A one-dimensional system containing a small,
central potential well.

the perturbing well, the curvature of i, (d%J/dx?) is nearly constant. When' the
new well is added, the curvature of i in the region B must be considerably
greater than it was before, and therefore greater than the curvature just outside
the well. This occurs since, in the region B, the difference between the potential
energy and the total energy is much greater. Inside the region B the true wave
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function ¢; must have the form of a sinusoidal wave, but of short wavelength,
with a maximum centered at x = L/2. The short wavelength sinusoidal function
must, by the postulates, join smoothly (in amplitude and in slope) at both
boundaries [at x = (L/2) — (B/2) and at x — (L/2) + (B/2)] to the rest of the
wave function (also of sinusoidal form but of longer wavelength) which exists
outside the small potential well. Since the new wave function experiences such
sharp curvature in the region of the narrow well, it is clear that outside the
narrow well the wave function does not need to curve quite as sharply as it
did before the narrow well was added. Thus, in spite of its longer wavelength
outside the narrow well, the new ¢ can still satisfy the boundary conditions
(zero amplitude at the infinitely high potential barriers). Since long wavelength
is associated with small momentum and thus with small kinetic energy, one
should expect the new value of the characteristic energy W, (Figure 7.3a) to
be lower than the original value WY, and indeed this expectation is quantitatively
confirmed by the more detailed calculations which follow.

Figure 7.3c gives the correction ¢, (x) which must be added to the zero-
order wave function ¢{ to produce the true wave function ;. We can see that
the correction to the zero-order wave function has a different magnitude and
sign in different spatial regions.

The over-all magnitude of ¢, may be adjusted to make it normalized, i.e.
+ o

f Yiyadx = 1. This has been done, in an approximate manner, for Figure
7.3b. We shall see below, however, that the first-order theory always assumes
that the correction terms to ¢ are small and that renormalization is not neces-
sary.

The addition of the particular perturbation of Figure 7.3 happens to pro-
duce a new system which is exactly solvable, so that it is possible to compare
the exact and the approximate solutions. In general, however, this situation
does not occur. Suppose, for example, that the added perturbation were not a
simple square well, but had some other shape for which there happened to be
no closed-form solution. Perturbation theory would still work as well as ever,
but the exact solution could not be found, at least by simple mathematical
means., ’

The system in Figure 7.3 gives an example of how, for small perturbations,
the true wave function is really much like the zero-order wave function, and
the shift in the characteristic energy, from the zero-order energy, is small. It
also gives, in graphic form, the nature of the two unknown expressions in the
first-order equation [7-9]. W] is merely a simple number, but ¥'(x) is an un-
known function of x. How can we determine this function? The key step is
to express y;(x) as a series of a complete set of orthogonal functions.

It is at this point that the orthogonality of the basic zero-order wave
functions becomes indispensable. As we have seen in Chapter 5, almost any
function of space can be synthesized by a superposition of a set of appropriate
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eigenfunctions. We assume, therefore, that the correction i, to the zero-order
wave function ¥, is given by the series

o= 3 [7-10

That is, the correction terms added to the nth zero-order eigenfunction will be
synthesized from a superposition of the complete set of zero-order eigen-
functions. The calculation amounts to finding a particular set of 4;,’s which
will make the synthesis correct. In the example of Figure 7.3, we ask: What
amplitudes of the basic functions \/ ?.—/f, sin jmx/L (j=1,2,3, --+ ) are needed
to synthesize the particular function of x shown in Figure 7.3c?

Each system, of course, will have its own ‘‘natural set” of basic, or zero-
order, functions which are suitable to the problem.

We substitute [7-10] into the first-order equation [7-9]. The term H%,
becomes o :

H%, = H°S a3 = 3 a; Wy}
i ;
since H% ] == W%?. Thus, [7-9] becomes
Sa(Wi— W) =W, — H) [/-11

This equation is a shorthand statement of the equality of a sum of terms
on the left to the expression on the right. The student who is not thoroughly
familiar with this type of notation should write out at least the first few terms
in the series to obtain a better picture of the real nature of the equation. Ex-
pressions involving summation signs are often deceptively simple in appearance.

We are here concerned with the perturbations of a nondegenerate state.
This is a state which has the characteristic energy W2 to which there belongs
only one eigenfunction 9. For example, the ground state of the hydrogen
atom (Section 4.8) has the energy W, to which belongs only one eigenfunction
P100> SO that this state is nondegenerate. When the characteristic energy is W,
however, there are four different eigenfunctions, and the state is said to be
(fourfold) degenerate.

Our first'step is to calculate W,, the correction to the zero-order energy,
caused by the addition of the perturbation H' to the zero-order Hamiltonian
H°. We multiply [7-11] from the left by y2*

S a (W — W = Wi — o H
J

In this operation, we have made use of the fact that the a’s and the W’s are
constants and can be interchanged, in order, with %*. H’, being an operator,

* The a;’s in [7-10] all have specific values needed to synthesize the correction to a par-
ticular zero-order eigenfunction ‘t'S. The a’s are often written, a(}). Here, we concentrate on
finding the set of a’s which are correct for only one eigenfunction, the nth, and neglect writing
the superscript (n).
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cannot be interchanged, in order, with the eigenfunction ¢%* (except when H’
has certain special forms).

We now multiply each term by the volume element dr and integrate each
term over the full range of all the coordinates,

S a (WP — Wi [ yrdidr — W[ i — [gix v gar
Since
f¢%*¢%d¢ =1 and [lﬁ%*l/lgdv' =0 when j # n

all of the terms on the left are zero. (The integral is zero when n # j, and the
factor (W — WJ) is zero when n = j.) Thus,

Wo = [ 4o H' 45, dr [7-12
all configuration space

“Since H' is given and the zero-order eigenfunction 9 is known, the energy

correction W, to the nth nondegenerate level can be calculated directly from -

[7-12].

The next step is to find each of the a;’s which, in the series [7-10], specify
the unknown correction ¢,. When ¢, is added to 4%, we have the true (to
first-order) wave function ¢ belonging to the true (to first-order) energy
W, = W2 -+ W,. This is done in the same manner as in the calculation for
W, except that each term in [7-11] is now multiplied from the left by the
complex conjugate of a different zero-order eigenfunction, say y2*. Again, we
multiply by the volume element dr and integrate over all of the coordinates.
Equation [/-11] becomes,

S a(WP — W) [t = W, [ubsgdr — [ yoxH yar

The left side of this equation is a sum of terms in each of which j has a different
value, identifying, in turn, each of the complete set- of the zero-order eigen-
functions. We are in the process of finding the correction to the nth zero-order
eigenfunction, so here n is fixed. Also, we have used the complex conjugate
of a particular zero-order eigenfunction ¥%* to multiply [7-11], so that here
m is fixed. Due to the orthogonality of the zero-order eigenfunctions, the left
side of the above equation is zero whenever j % m, leaving, on the left, only
one term—for which j = m. Since we have specifically assumed that m = n,
the first term on the right is zero. Thus,

0 0y __ 0 % /10
an(Wa— WD = — [Yo*H' §8 dr
all configuration space

Solving for a,,, the amplitude of the mth component in the correction ¢ to the
unperturbed eigenfunction 9, which is needed to produce the true (to first-
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order) eigenfunction ¥,

[ v gt ar
We—We

A = — m#n [7-13
There may be an infinite number of these equations if the complete set of
zero-order eigenfunctions is infinite in number. Thus, to find the true i, for
just one of the eigenfunctions of the perturbed system requires a great deal of
calculation. Usually only a finite number of the a,,’s, calculated by [7-13],
have a significant magnitude. Each a,, depends upon the form of the per-
turbation H’ and upon the spatial form of the two different functions, 42, and
%, in [7-13].

We see, from [/-13], why it is that this theory is valid only when applied
to a nondegenerate level. Suppose that the state whose eigenfunction is 2,
has the same characteristic energy value as that state whose eigenfunction is
$%—in other words, two different eigenfunctions belong to the same energy
level (we say that this level is twofold degenerate). When this happens a,, will,
in general, become infinite, making the correction ¢, infinite and therefore un-
suitable as part of a wave function. This catastrophy will be avoided only if it
also happens that the integral forming the numerator of [7-13] goes to zero
whenever the denominator does. .

In the next chapter we will discuss the method of avoiding infinite a,,’s
even though degeneracy exists.

To find the true eigenfunction and the true characteristic energy of some
different, nondegenerate level, k&, it is necessary to repeat, for the kth level, the
complete calculation we have just outlined for the nth level. Thus, a system
that has relatively simple, closed-form expressions for its zero-order eigen-
functions will have, after the addition of a perturbation, eigenfunctions that
are describable only with the aid of a long table of the a,’s—one complete list
for each of the eigenstates. The new eigenfunctions are still describable in
terms of the original ones, but each eigenfunction now appears in the relatively
clumsy form of a particular series of the zero-order eigenfunctions. The value
~ of the true (to first-order) W, is

Wn: W2+H;zn [7—|4
where by the symbol H,, we designate the right side of [7-12],
How = [45% H' Yodr [7-15

By [7-3] and [7-10], the first-order wave function for fhe nth eigenstate is

fo = P + al‘/‘? + az‘/’g + a3t/1§ + o Fan o + an‘/’?x
e+ [7-16

Each of the a,’s (m=1, 2, 3, 4, --- ) in this equation can be calculated
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from [7-13] except a,, for which m = n, and therefore [7-13] is inapplicable.
With this one exception, therefore, [7-13] gives each of the a’s

7 ay = (M, (n # m) [7— l 7
where ‘
How = [ 5% H' %, dr [7-18

The symbols H,,, and H,,, are called the matrix elements of the operator
H' with respect to the specified eigenfunctions. These expressions, because of
their appearance, are easy to confuse with the perturbation operator H’, but
they are of course very different, since they imply an important operation
involving H' and two eigenfunctions.

How can the only undetermined constant, a,, in [7-16] be found? We
have one requirement left—the new wave function ¢, must be normalized. It
is basic to perturbation theory that the amplitude of the perturbed zero-order
eigenfunction does not change appreciably, but in first-order theory we regard
this amplitude as being constant. To see what limits the normalization of ¥,
sets upon a,, we write the perturbed eigenfunction

Yo = Aa + Aagdy 4+ o+ (L day) P+ [7-19

where only a, is undetermined. We then form the complex conjugate i,
multiply it into #,, insert the volume element dr, integrate term-by-term over

all configuration space, and set fsl'}'i , dr = 1, with the result,
=1+ Xak+ an) + Mala, + afa, + - +alan+ ) [7-20

|
We neglect the second-order (A%) terms, and note that [7-20] is true for arbitrary
Aif 2 X (real part of a,) = 0. The undetermined imaginary part is of no physical
significance. In actual first-order calculations, one sets a, = 0.

7.2. A sample calculation for a nondegenerate level

To see how the theory in the previous section is applied, we return to the
problem of Figure 7.3. In this simple one-dimensional case we were able from
general considerations to predict the approximate consequences of the addition
of the perturbing potential well in the center of the one-dimensional box. We
will now use the theory to calculate the same results.

For a single particle of mass m, in a one-dimensional box, with infinite
walls at x =0 and x = L, without the perturbing potential, the amplitude
eigenfunctions are

Yo = N/% sin nwx/L
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(¢o)2 2-2x10* / (b)

Fig. 7.4. A sample calculation using perturbation theory.

and the energy eigenvalues are,
W2 = n?n2h2[2mL>?
Let the mass = 9.11 x 10728 gm, L = 10~® cm. Since /4 = 1.054 X 10727
erg sec, we have '
$? =1/2 x 108 sin nrx/10-8 (cm)~—1/2
The lowest energy level is®
W =6-0x 10 erg, or 38 e.v.

5If h = 1.054 x 10~ joule sec, m =9.11 x 10-3 kg, and L = 10" m, then
W? =6.0 x 10718 joule (1 e.v. = 1.6 X 10~ joule).



176 - NONDEGENERATE PERTURBATION THEORY (Chap. 7)

This is plotted on the potential energy diagram at the top of Figure 7.4.

Let H'= — 5.1 x 107 erg (or —32 e.v.) in an interval B, of 10-? cm,
centered at 0.5 x 10-® ¢cm, and zero elsewhere.

We first calculate Hy,, the first-order correction to the energy level W9

' &=5.5x10"*
H;, = WZ_B f (— 5.1 x 10712) sin%(mx/10-%) dx
x=4.5x10"*

which, from Figure 7.4b, can be seen to be very nearly equal to

(2 X 10" ecm™1)(— 5.1 x 10" erg)(10~° cm).
Thus,
H{, = —10.2 x 102 erg

= —6.3e.v.

The addition of the potential well lowers the original 38 e.v. level to 31.7 e.v.
This lowering of the characteristic energy of the first resonance, or eigenstate,
by the addition of the potential well is in agreement with the qualitative argu-
ments used in connection with Figure 7.3.

We next calculate the amplitude of the ¢3 “component” present in the
correction to the zero-order wave function. By [7-13],

. — f / 1% sin (2mx/10-8)(— 5.1 x 10-11) A/% sin (mx/10-8) dx
21 —
Wl — W (22 = 1)(6.0 x 10-11)

ay =

where the integration runs from

x=(5.0—0.5 x 10-°
to
x=(5.04 0.5 x 10~°cm,

since H' is zero everywhere else. Examination of Figure 7.4c shows at once,
however, that the integral H,, will be zero, since the two shaded areas have
opposite sign and are equal in magnitude. Thus a, = 0.

The calculation of a; can be performed approximately with the aid of
Figure 7.4d, since both functions are essentially constant over the range of
integration. |

Hy =~ (\V2/L)Y(— 5.1 x 10-1)(— 4/2/L)(10~%); L = 10~® cm
-

Nt S it
¥a H' ~y¢] Ax
Hy =~ 4 1.02 x 10~ erg

—Hy, 1.02 x 10 erg

. —Hj = — .0208
W= P (32 —1)6.0 x 107" erg
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With the aid of Figure 7.4d, one can see at once that H,; = 0, and there-
fore a,=0.

As higher a,’s are calculated, one should use exact integration in the
calculation of the intensity of the odd-numbered components, because the eigen-
functions vary more rapidly inside the perturbing well, although by symmetery

roo
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-IO 1l X'IO‘3 : : ) ) a3=_20.8
| | X107
b
) |
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Fig. 7.5. The calculated corrections to the zero-order state
4 of the system of Figure 7-4.

all of the even-numbered components are always exactly zero. Because the
denominator W9 — W? appears in the calculation of a;, the magnitude of aj
becomes smaller with increasing W9§ — W09,

Continuing the calculation of the a,’s, we find the amplitude of the terms
up through n = 9. These are shown in Figure 7.5. The component wave
functions are drawn to scale, with the correct sign. At the bottom of Figure
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7.5 the terms ayyy through agd have been added together to give the cor-
rection ; needed to convert the zero-order wave function for this stage, 4,
into the true (to first-order) wave function, ¥,. This correction term is seen to
have the same shape as the one sketched in Figure 7.3c, which was deduced
from general considerations.

Except for the terms for n = 1i and higher, which rapidly decrease in
amplitude and can be neglected, we now have the true wave function expressed
as a superposition of zero-order wave functions.

The normalized, true (to first-order) wave function for the lowest level of
the system, including perturbation, is

Y1 = 42 4+ (— 20.8 x 10-3) 42 + (6.2 x 10-3) y?
+(— 2.7 X 1073 42 + (1.3 x 10-%)  + -

The characteristic energy belonging to this wave function is
W,=W?—1.02 x 10 erg

A mathematically exact solution of the problem will produce a function
Y(x) and a characteristic energy W, which are nearly indistinguishable from
the above approximate results. Estimating the accuracy of a perturbation cal-
culation is an advanced subject which will not be considered here.

This sample calculation has in it all the essential features of any perturba-
tion calculation for a nondegenerate level in any one-, two-, or three-dimensional
system. The only difference in the other systems is that the basic zero-order
eigenfunctions in which the true wave function is expressed are different func-
tions of space. One general feature is always present, however. The larger the
perturbation, the greater the inaccuracy of the first-order calculations.

In some cases calculations using this theory can be compared with the
results of actual experiments. Such a case is the calculation of the lowest energy
level of the helium atom, for which Z = 2 and for which there are two electrons
surrounding the nucleus. The details of this problem can be found in other
textbooks® and only the main points will be outlined here.

Assume first that for the zero-order system the two electrons do not sense
each other’s presence in any way but have a potential energy due solely to the
presence of the nucleus. The potential energy for the system is then

V= —(Ze*r)) — (Ze*r,)

where r; locates the first electron at x,, y,, z,, and r, locates the second electron
at x,, y,, z,. Each of the kinetic energy terms is dependent on only three of the
six coordinates. We neglect the motion of the nucleus. If the operators are
substituted for the dynamical variables according to Postulate II, the resulting
zero-order wave equation can be separated into two, one dependent upon

¢ See, for example, L. Pauling and E. B. Wilson, Introduction to Quantum Mechanics
(1935, McGraw-Hill Book Co., Inc., New York): p. 162.
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X1, V1, Z;, and the other on x,, y,, z,. ¥° is the product of two hydrogen-like
wave functions, each dependent upon one set of coordinates. The zero-order
energy W°is the sum of the individual energies of the two electrons, each in
the coulomb field of a nucleus with Z = 2.

Thus the zero-order wave function and the zero-order energy for each
electron in the state ,,, are exactly known.

We now add the perturbation,”’

H' = + €[ry,

where r,, is the distance between the two electrons. This is the mutual potential
energy of repulsion of the two electrons, each with charge e. This is really a
quite large perturbation in the sense that the correction energy W’ is com-
parable to the energy of the unperturbed level, and the results based upon it
should not be expected to be extremely accurate. The term

ris = \/(xl — x9)% 4 (y1 — y2)® + (21 — 22)%

depending as it does on all six spatial coordinates, does not permit the separa-
tion of the exact wave equation. For this reason perturbation methods, or
some numerical methods of solution, must be used. '

The first-order correction to the energy is

W’ = f%bloo,loo (Ze*[r13) $100,100 AT

where ¢;40.100 18 merely the product of two i,,, eigenfunctions as given in
Appendix VI, one a function of r, and the other of r,. The volume element dr
is (r2sin 8, db, dp, dr)(rk sin 0, db, dé, dr,). The above integral yields the
result

W' = 1+-33.82e.v.

Since the zero-order energy is — 108.24 e.v., the perturbation calculation
predicts that the lowest energy level of helium will lie at

W,= —174.42 e.v.
Experimentally, the lowest energy level is found to be
W, = —T78.62¢e.v.

that is, it requires 78.62 e.v. to completely remove both electrons from a helium
nucleus, bringing them to rest at infinity.

Thus, the first-order perturbation calculation gives a 27 per cent correction
to the zero-order energy and gives a final result which is 5.5 per cent in error
from the experimentally determined value.® :

71If e is expressed in e.s.u., and r in ¢cm, then H’ is in ergs. If ¢ is in coulombs, and r in
meters, H’ = (1/4 n ¢,) e?/r joules, where (1/4 7 ¢,) = 9 x 10° nt m?/coulomb.

8 A more accurate calculation requires that other effects are included such as “exchange
symmetry’’ (Section 11.9).
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As Z increases, the relative importance of the electron repulsion becomes
less. For example, for quadruply ionized carbon, Z = 6, there are two electrons.
Here, the correction W’ is 10 per cent of the unperturbed energy and the cal-
culated value is only 0.4 per cent in error compared to the experimental value.

The first-order wave functions can also be found by the same principles
we have discussed in this section. Due, however, to the geometrical complexity
of the hydrogen-like wave functions, and also to the nature of the perturbation
H’, this calculation is not easy to perform. ;

We have discussed here only the most simple type of perturbation theory.
By extending the method to include the second-order terms in [7-8] (where, for

n» One substitutes, once again, a series of the basic zero-order eigenfunctions
and then proceeds in a manner similar to first-order theory), greatly improved
accuracy can often be obtained. In addition to these methods there are many
other techniques of approximate calculation that can be found in the more
advanced textbooks and in the literature.

7.3. Summary

In this, and in all of the subsequent chapters, the detailed method of
presentation loses much of the brevity and essential simplicity of the mathe-
matical argument. Also, for reference purposes, it is convenient to have the
key equations brought together. Therefore, we reproduce here, in outline form
and with minimum comment, the essential steps in theory developed in this
chapter. The equations are identified by the same numbers that are used in
the main part of the chapter.

For the nth level, the exact or true wave equation is

Hy, = Wy, where H = H® 4 AH’ [7-6], [7-]
In the true wave equation, we substitute:

b= P+ My where =S a 40 [7-3], [7-10

W,= W2 AW, [7_4

obtaining [7-8] (see text).
We set the coeflicient of A° = 0, obtaining

H 4, = Wp 4%, the zero-order equation [7-2
We set the coefficient of A! = 0, obtaining

Y a (W) — WS = (W, — H') §S, the first-order equation [7-9], [7-II
i

We multiply the first-order equation from the left by ¢9*, insert dr, and integrate
over all configuration space, obtaining one equation, which gives the energy
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correction to the nth level,
W, — f%* H' {2 dr = H,, [7-12

We repeat the above operation, except using $2*, (m 7% n), obtaining a set of

m >
equations which gives, by [7-10], the correction to the wave function of the
nth level,

[wsrmgsar
WoL— WS Wh— WY
where m = 1,2, 3, -+ except, m # n. [7._| 3

A = —

To first-order, set a, = 0. Since all the above results are true for arbitrafy A,
we set A = 1. Thus, from [7-3] the first-order energy is

Wom WOt W, [7-21

where W, is given by [7-12].
From [7-4] the first-order wave function belonging to W, is

¢n:¢%+al¢g+az¢g+aa‘/’g+"'+(0)‘/‘2L+"' [7—22

where each a,, is given by [7-13].
For another level—the kth—this whole process must be repeated, resulting
in a first-order W, and ;.

PROBLEMS

Problem 7.1. For the system described in Figure 7.4a find, to
first-order, the energy value W, and the amplitudes, a; of the two
strongest components in the correction, i, to the zero-order wave
function 3.

Problem 7.2. For the system of Figure 7.4a find, to first-order,
the energy value W, and the amplitudes a; of the two strongest com-
ponents in the correction, i, to the zero-order wave function 9.
Hint; With the aid of diagrams, make a geometrical analysis of the
problem, exploiting symmetry, before doing any quantitative calcula-
tions. ' '

Problem 7.3. Classically, a particle bound by a potential such -
as that in Figure 7.4 would, upon losing energy, settle down into the
central potential well. Estimate the necessary depth of the central
well in Figure 7.4 in order that the quantum-mechanical particle
could be bound inside it.





